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Condensation of hard rods under gravity: Exact results in one dimension
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Department of Physics, Lewis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 11 September 2000; published 24 April 2001!

We present exact results for the density profile of a one dimensional array ofN hard rods of diameterD and
massm under gravityg. For a strictly one dimensional system, the liquid-solid transition occurs at zero
temperature, because the close-packed densityfc is 1. However, if we relax this condition slightly such that
fc512d, we find a series of critical temperaturesTc

( i )5mgD(N112 i )/m0 with m051/d21, at which the
i th particle undergoes the liquid-solid transition. The functional form of the onset temperature,Tc

(1)

5mgDN/m0, is consistent with the previous result@Physica A271, 192 ~1999!# obtained by the Enskog
equation. We also show that the increase in the center of mass is linear inT before the transition, but it
becomes quadratic inT after the transition because of the formation of solid near the bottom.
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I. INTRODUCTION

In a previous paper@1#, the author proposed that a ha
sphere gas undergoes a condensation transition under gr
g, and identified the transition temperatureTc as the point at
which the Enskog equation@2# fails to conserve the tota
number of particles. Based on the fact that hard spheres
not be compressed beyond the close-packed density, it
suggested@1# and confirmed@3# that the missing particles
should condense from the bottom and form a solid belowTc ,
and the fraction in the solid regime at a temperatureT,Tc
was predicted to be 12T/Tc . The transition temperatureTc
was determined as

Tc5mgDm/m0 , ~1!

wherem andD are the mass and diameter of the hard sph
m is the layer number of the system, andm0 is a constant tha
depends on the level of approximation in truncating
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy @4#, or perhaps in employing the density function
theory @5#. Hence, the value obtained by the Enskog the
@1#, or more precisely by the Enskog pressure, may be c
to the real value, but not precise. For example, if one uses
pressure form suggested by Percus and Yevick@6#, this con-
stant will be slightly different. For a one dimensional latti
gas @7,8#, it can be shown thatm052 ln@a/(12a)# with a
5exp(214). The crucial point, however, is that the scali
form of the transition temperature@Eq. ~1!# should survive in
all approximations. The purpose of this paper is to dem
strate this point by exactly solving the one dimensional h
sphere problem under gravity. For a strictly one dimensio
~1D! system, the condensation transition occurs at zero t
perature, because the close-packed densityfc is 1. However,
some useful information may be extracted from 1D result
we relax this condition slightly such thatfc512d. This
may represent the case where the rods are compressibl
as we discuss later, if we may model the weakly interact
high dimensional system by the coarse grained one dim
sional system. Then the transition occurs at a finite temp
ture. Even though the fluctuations in three dimensions~3D!
are very different from those in the 1D system, we will sho
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in this paper that results obtained in this way appear to
relevant to real physical systems. Perhaps one may v
such a 1D system as a coarse grained mean field approx
tion of the real three dimensional hard sphere system.
will obtain the exact transition temperatureTc and check its
functional form against Eq.~1!. We also determine the serie
of transition temperaturesTc

( i ) at which thei th layer under-
goes the condensation transition. We further show how
sharp change in the center of mass statistics shows up be
and after the transition. Before the transition, the increas
the center of mass islinear in T, while after the transtion it is
quadratic in T, because of the formation of solid near th
bottom, which is a characteristic of Fermi systems@9,10#.

II. CONDENSATION OF ONE DIMENSIONAL HARD
SPHERE GAS UNDER GRAVITY

Consider a collection of hard spheres of finite radiusR ~or
diameterD52R) in a one dimensional tube with the to
open. Let the mass of thei th particle bemi . We assume tha
each hard sphere is in thermal equilibrium with a heat res
voir at a temperatureT. The system we have in mind is th
one used in the usual molecular dynamics simulations, wh
each particle is kicked periodically by Gaussian noise so
the average kinetic energy of each particlem^v2&/25T. We
ignore the pressure due to the reservoir. In such a case, s
the kinetics is separated out, we consider only the confi
rational integral in computing the partition functionZN of the
N particle assembly:

ZN5E
R

`

dz1E
z112R

`

•••E
zN2112R

`

dzN

3exp@2b8g~m1z11•••1mNzN!# ~2!

with b851/T. The hard sphere gas without gravity has be
studied and is known as the Tonk gas@11#. The integral in
Eq. ~2! involves exponential functions and thus can be c
ried out exactly to yield
©2001 The American Physical Society06-1
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ZN5
1

~b8g!N

e22b8gmNR

mN

e22b8g(mN1mN21)R

~mN1mN21!

3•••3
e2b8g(m11m21•••1mN)R

~m11m21•••1mN!
. ~3!

We now compute average quantities. First, the average p
tion of the i th particle^zi(T)& is given by

^zi~T!&52
1

b8g

] ln ZN

]mi
5~2i 21!R1

T

g
z̄i , ~4!

where

z̄i5(
j 51

i S 1

(
k5 j

N

mk
D . ~5!

If all the masses are the same, i.e.,mi5m, then this reduces
to

^zi~T!&/D5~ i 21/2!1
T

mgD (
j 51

i
1

N112 j
. ~6!

Note that the first term,̂zi(0)&/D5 i 21/2, results from the
close packing in the ground stateT50 and the second term
represents the thermal expansion. Note also
( i

N^zi(T)&/D5N2/21TN/mgD. The dimensionless therma

expansion defined as z̄i5(^Dzi&/D)(mgD/T) with
^Dzi(T)&5^zi(T)&2zi(0) is independent of the temperatur
For example,

z̄151/N, z̄251/N11/~N21!,

z̄N51/N11/~N21!1•••11/211.

The dimensionless mean expansion per particle is
cisely given by the thermal energy injected into the syste

^ z̄~T!&5
1

N F(
i

N

^Dzi&G mg

T
5

1

N (
i

N

^zi~ t !2zi~0!&
mg

T

5(
i 51

N

z̄i~T!51. ~7a!

The change in the center of mass due to the thermal ex
sion is linear in T:

^z~T!&5
1

N (
j 51

N

@^zi~T!&2zi~0!#5T/mg. ~7b!

We now compute the density profiler(zi) as a function of
position zi . Define the dimensionless densityf(zi)
5r(zi)/rc with rc51/D. Then, sincer(zi)Dzi5D i , we find
f(zi)5(D i /Dzi)/rc and its discrete version becomes
05150
si-

at

e-
:

n-

f~zi !51YF11
1

b

1

N112 i G , ~8!

where we have used the relation

1/N11/~N21!1•••11/~N2 i 11!

'2E
x5N

x5N2 i 11

dx/x

52 ln@12~ i 21!/N# ~9!

and we have redefined the dimensionless temperaturb
5mgD/T and the dimensionless coordinateyi5^zi&/D:

yi5~ i 21/2!1
1

b (
j 51

i
1

N2 j 11
. ~10!

Note that*r(zi)dzi5*f(yi)dyi5N fc with fc the close-
packed density. The density at the bottom layer,f0, is given
by Eq. ~8! with i 51, i.e., f051/@111/bN#. For a strictly
one dimensional system, the close-packed densityfc51,
and thus by settingf05fc51 we find that the crystalliza-
tion occurs at zero temperature in one dimension.

In order to extract some useful information from one d
mensional results, and make them relevant to higher dim
sions, we assume that the close-packed density is below
a small amount, 0,dÞ0!1, i.e.,fc512d. What we have
in mind is a coarse grained three dimensional system, o
system of spheres or rods that are slightly deformed un
pressure, for which each column may interact weakly.
fact, we have found that such a system can be realize
molecular dynamics simulations if the system is initially a
ranged in a two dimensional square lattice with a little spa
between the columns. In such a case, the particles in e
column do not mix, and the square structure is maintain
@18#. Such a model can be understood as a coarse gra
mean field model in the spirit of Ref.@7#. Certainly, the
fluctuations in three dimensions~3D! are very different from
those in 1D, and thus it may be objectionable to extend
results of 1D to 3D. Nevertheless, the results for 1D obtain
in this way with regard to the existence of the condensat
temperature, and perhaps the existence of the discrete j
in the condensation process, may survive in high dimens
as will be shown shortly.

Now, if we let fc512d, we can easily find the onset o
the condensation temperatureTc at which the first layer be-
comes crystallized:

Tc5mgDm/m0 , ~11!

wherem5N is the initial layer number~or the Fermi energy
@10#!, and the constantm0 is given by

m05
1

d
21. ~12!

Note that Eq.~11! has the same funtional form as Eq.~1!.
One may related to the critical pressurePcD

25m0Tc /D at
which the crystallization occurs. From the force balan
equation, we find the pressure at the bottom:
6-2
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P~0!D25mgE
0

`

dzf~z!5mgNfc . ~13!

The factorD2 was introduced to effectively model the thre
dimensional system. By equatingP(0) to the critical pres-
sure Pc , we again find the transition temperatureTc
5mgDm/m0(fc). Reference@7# identifies the critical pres-
sure asPc514Tc /D3. Hence, we findm051451/d21, and
d51/1550.0667.After the first layer becomes crystallize
at Tc , the density profile above the second layer is given
Eq. ~8! with N replaced byN21 andi 51, . . . ,N21. This is
effectively equivalent to shifting the origin from the first t
the second layer. The second layer, which has now bec
the origin, becomes crystallized at the second critical te
peratureTc

(2) : f0(Tc
(2))512d. The process continues, an

we can find a series of critical temperaturesTc
( i ) at which the

i th layer in the original labeling becomes crystallized:

Tc
( i )5

mgD~N112 i !

m0
. ~14!

So all the particles are crystallized atT5Tc
(N)5mgD/m0,

which is not the absolute zero, becausedÞ0. Note also that
the crystallization of each layer proceeds with a discrete t
perature jumpDT5Tc

( i 11)2Tc
( i )5mgD/m0. Hence, the hea

release or the latent heatQ resulting from the formation of
one solid layer isQ5DT5mgD/m0. Bibenet al. @12# inves-
tigated the density profile of a hard sphere suspension
gravitational field using Monte Carlo simulations, and r
ported that forD̄5mgD/T<2.5 the system is a strongl
perturbed fluid, while atD̄'2.75 the first two layers form a
crystal, and the formation of third and fourth layer crysta
occurs in adiscontinuousmanner betweenD̄52.5 and D̄
52.75. SettingmgD/Tc52.5 andTc5mgDN/m0, we find
m052.5N andd'1/(2.5N11)'0.038 46, ifN is of order 10
@12#. Such findings do not seem to be inconsistent with
results presented above.

We now examine the center of mass statistics below
condensation pointTc5Tc

(1) . At a given temperatureTc
( i 11)

,T,Tc
( i ) , what is the fraction of particles in a condens

regime? At this temperature, particles up to thei th layer are
condensed. Then, the fraction of particles in the conden
regime,zF[ i /N, which is termed the Fermi surface@1#, is
given by a simple manipulation of identities:

zF5 i /N512FN2 i

N G512T/Tc , ~15!

where we usedTc
( i 11)/Tc5@mgD(N2 i )/m0#/mgDN/m0

5(N2 i )/N[T/Tc .
Now, the dimensionless center of masŝy(T)&

[^z(T)&/D is given by

^y~T!&5E
0

`

dy yf~y!Y E
0

`

dyf~y![I 2 /I 1 , ~16!

where the integral now splits into two due to the formation
a solid belowzF . More precisely,
05150
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I 15E
0

zF
fc dy1E

zF

`

f~y2zF!dy5fczF1~N2zF!fc

5Nfc . ~17!

We need some manipulation in computing the denomina
I 2. To this end, we again splitI 2 into two integrals: one for
the solid regime, which is essentially a rectangle, and
other for the fluid regime, where the density profile is giv
by Eq. ~8! but with N replaced byN85N2zF . Hence,

I 25E
0

zF
yfc dy1E

zF

`

yf~y2zF!dy

5fczF
2/21zFfc~N2zF!1J, ~18!

where

J[E
0

`

dy yf~y!5 (
j 51

N2zF

yjf j S Dyi

D i D
i 5 j

5 (
j 51

N2zF

zj /D.

~19!

But ( j
N8zj5D@N82/21TN8/mgD# @Eq. ~6!#. Hence, with

N85N2zF5NT/Tc , we find

J5@N2T2/2Tc
21~N2T2/m0Tc

2!#5N2L~T/Tc!
2, ~20!

whereL5@1/211/m0#. Note that the increase in the cent
of mass is quadratic inT, namely

^Dz~T!&5^z~T!&2ND/25aND~T/Tc!
2 ~21!

with a5@21d(12d)#/@2(12d)2#, which is a characteris-
tic of Fermi systems@10#.

In passing, we make the following remarks. In Ref.@7#, an
attempt was made to derive the condensation point for
lattice gas, which is again consistent with the form given
Eq. ~1!. While the lattice gas may capture some of the
sence of hard sphere systems, it is important to recog
that the logarithmic singularity in the pressure of the latt
gas@7,13# is far different from the power law singularity of
real hard sphere gas@14#. Finally, the relevance of the
present study to granular materials@15#: Granular materials
are macroscopic particles, and the parameterD̄5mgD/T
'1013 is an astronomical number, if one uses a usual te
perature. Hence, the temperatureT of the hard sphere ga
should be interpreted differently. One way to relate this te
perature to the vibrational strength of the granular bed is
compare the kinetic expansion of the granular bed to
thermal expansion of hard spheres, as was done in Ref.@10#.
If we denote byh̄(G) the jump height of a single ball in a
vibrating bed of vibrational strengthG5Av2/g with A and
v the amplitude and frequency of the vibration, then we m
set

^Dz~T!&5aND~T/Tc!
25h̄~G!, ~22!

from which we can find the relation between the therm
temperatureT of the hard spheres and the vibration
strengthG:
6-3
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T

Tc
5~12d!A h̄

D

1

N

2

21d~12d!
, ~23!

or, equivalently,

T

mg
5dA 2h̄DN

21d~12d!
. ~24!

We point out that for granular materials excited by vibrati
in a two dimensional container,D̄5mgD/Tc was determined
by fitting the density profile of Ref.@9# by the Enskog pro-
file. The estimated value wasD̄'4.926@3#, and the dimen-
sioness temperature of the vibrating bed wasT/Tc50.663.
f
,

pl

05150
However, we point out that we have not taken into acco
~a! the internal degrees of freedom@16# of the macroscopic
particles, such as rotation, and~b! the inelastic collisions,
which may lead to an interesting clustering instability@17#.
Hence, one has to be somewhat careful in extending the
sults of elastic hard spheres to granular materials.
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