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Condensation of hard rods under gravity: Exact results in one dimension
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We present exact results for the density profile of a one dimensional arfdyafd rods of diametdd and
massm under gravityg. For a strictly one dimensional system, the liquid-solid transition occurs at zero
temperature, because the close-packed deggitis 1. However, if we relax this condition slightly such that
$.=1— 6, we find a series of critical temperatur€®=mgD(N+1—i)/uo with o= 1/6—1, at which the
ith particle undergoes the liquid-solid transition. The functional form of the onset temperaiite,
=mgDN u,, is consistent with the previous resfiRhysica A271, 192 (1999] obtained by the Enskog
equation. We also show that the increase in the center of mass is linGabéfore the transition, but it
becomes quadratic i after the transition because of the formation of solid near the bottom.
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I. INTRODUCTION in this paper that results obtained in this way appear to be
relevant to real physical systems. Perhaps one may view
In a previous papefl], the author proposed that a hard such a 1D system as a coarse grained mean field approxima-
sphere gas undergoes a condensation transition under graviign of the real three dimensional hard sphere system. We
g, and identified the transition temperatdrgas the point at  will obtain the exact transition temperatufg and check its
which the Enskog equatiof?] fails to conserve the total functional form against Eq1). We also determine the series
number of particles. Based on the fact that hard spheres canf transition temperature‘s'(c') at which theith layer under-
not be compressed beyond the close-packed density, it wages the condensation transition. We further show how a
suggested1] and confirmed 3] that the missing particles sharp change in the center of mass statistics shows up before
should condense from the bottom and form a solid belgw  and after the transition. Before the transition, the increase in
and the fraction in the solid regime at a temperaflireT,  the center of mass I;earin T, while after the transtion it is
was predicted to be2T/T.. The transition temperatufB,  quadraticin T, because of the formation of solid near the
was determined as bottom, which is a characteristic of Fermi systef@gl0].

Tc=mgDu/puo, 1)
) Il. CONDENSATION OF ONE DIMENSIONAL HARD

wherem andD are the mass and diameter of the hard sphere, SPHERE GAS UNDER GRAVITY
w is the layer number of the system, agaglis a constant that
depends on the level of approximation in truncating the ~Consider a collection of hard spheres of finite radR(er
Bogoliubov-Born-Green-Kirkwood-YvoriBBGKY) hierar- ~ diameterD=2R) in a one dimensional tube with the top
chy [4], or perhaps in employing the density functional open. Let the mass of théh particle bem;. We assume that
theory[5]. Hence, the value obtained by the Enskog theoryeach hard sphere is in thermal equilibrium with a heat reser-
[1], or more precisely by the Enskog pressure, may be closeoir at a temperatur@. The system we have in mind is the
to the real value, but not precise. For example, if one uses th@ne used in the usual molecular dynamics simulations, where
pressure form suggested by Percus and Yefggkthis con-  each particle is kicked periodically by Gaussian noise so that
stant will be slightly different. For a one dimensional lattice the average kinetic energy of each particiéy2)/2=T. We
gas[7,8], it can be shown that,= —In[a/(1—a)] with « ignore the pressure due to the reservoir. In such a case, since
=exp(—14). The crucial point, however, is that the scalingthe kinetics is separated out, we consider only the configu-
form of the transition temperatuf&q. (1)] should survive in ~ rational integral in computing the partition functidp, of the
all approximations. The purpose of this paper is to demonN particle assembly:
strate this point by exactly solving the one dimensional hard
sphere problem under gravity. For a strictly one dimensional
(1D) system, the condensation transition occurs at zero tem- (" * *
perature, because the close-packed demsitis 1. However, ZN= JR dzlJz R j dzy
some useful information may be extracted from 1D results if !
we relax this condition slightly such that,=1— 6. This Xexgd —B'g(myzy+ - - - +myzy)] 2
may represent the case where the rods are compressible, or,
as we discuss later, if we may model the weakly interacting
high dimensional system by the coarse grained one dimerwith 8’ =1/T. The hard sphere gas without gravity has been
sional system. Then the transition occurs at a finite temperastudied and is known as the Tonk gdd]. The integral in
ture. Even though the fluctuations in three dimensi(@i3) Eq. (2) involves exponential functions and thus can be car-
are very different from those in the 1D system, we will showried out exactly to yield
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We now compute average quantities. First, the average posi-

tion of theith particle(z(T)) is given by

3 1 dInz
<Zi(T)>__ﬁ am

N

T

=(2i—-1)R+ azi, (4)
where

i

2=

i=1

1
N

Z My
k=]

(5

If all the masses are the same, im,=m, then this reduces
to

. T < 1
(z(T))/ID=(i—1/2)+ ngJZl NI (6)

Note that the first termz;(0))/D =i—1/2, results from the
close packing in the ground stafe=0 and the second term
represents the thermal expansion. Note also
>N(z,(T))/D=N?2+TN/mgD. The dimensionless thermal
expansion defined asz=({Az)/D)(mgD/T) with
(Az(T))=(z(T))—z(0) is independent of the temperature.
For example,

7;=1N, z,=1N+1/(N-1),

Zy=1UN+1(N=1)+---+1/2+1.
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1
¢(Zi):1/ 1+E—N+l—i}’ (8)
where we have used the relation
IN+1U(N=-1)+---+1(N=-i+1)

x=N—i+1
%—j dx/x

Xx=N
=—In[1—(i—1)/N] (9)

and we have redefined the dimensionless tempergfure
=mgD/T and the dimensionless coordinate=(z;)/D:

1
B 12'1
Note thatfp(z)dz=[&(y;)dyi=N ¢ with ¢, the close-
packed density. The density at the bottom layky, is given

by Eq. (8) with i=1, i.e., pg=111+ 1/BN]. For a strictly

one dimensional system, the close-packed dengity 1,

and thus by settingby= ¢.=1 we find that the crystalliza-
tion occurs at zero temperature in one dimension.

In order to extract some useful information from one di-
mensional results, and make them relevant to higher dimen-
sions, we assume that the close-packed density is below 1 by
a small amount, & 6+ 0<1, i.e.,¢.=1— 6. What we have
in mind is a coarse grained three dimensional system, or a

1

thatystem of spheres or rods that are slightly deformed under

pressure, for which each column may interact weakly. In
fact, we have found that such a system can be realized in
molecular dynamics simulations if the system is initially ar-
ranged in a two dimensional square lattice with a little space
between the columns. In such a case, the particles in each
column do not mix, and the square structure is maintained
[18]. Such a model can be understood as a coarse grained
mean field model in the spirit of Ref7]. Certainly, the
fluctuations in three dimensioi8D) are very different from
those in 1D, and thus it may be objectionable to extend the

~ The dimensionless mean expansion per particle is preresults of 1D to 3D. Nevertheless, the results for 1D obtained
cisely given by the thermal energy injected into the systemin this way with regard to the existence of the condensation

N

> (Az;)

mg

1 EN: mg
T N2 (Eb-z0) 4

_ 1
(Z(T)>=N{

N
;1 Z(T)=1. (78

temperature, and perhaps the existence of the discrete jump
in the condensation process, may survive in high dimension,
as will be shown shortly.

Now, if we let ¢.=1— 8, we can easily find the onset of
the condensation temperatufg at which the first layer be-
comes crystallized:

Te=mgDu/uo, (12)

The change in the center of mass due to the thermal expan-

sion islinear in T:

1 N
(@M)=§ 2, (@(TM)-z(0]=T/mg. (™

We now compute the density profit€z;) as a function of
position z;. Define the dimensionless density(z)
=p(z)/p; with p.=1/D. Then, sincep(z;)Az,=Ai, we find
&(z)=(Ai/Az)/p. and its discrete version becomes

wherex =N is the initial layer numbetor the Fermi energy
[10]), and the constant, is given by

1

-1

5 (12

Mo=
Note that Eq.(11) has the same funtional form as E4).
One may relate’ to the critical pressur® D?= uT./D at
which the crystallization occurs. From the force balance
equation, we find the pressure at the bottom:
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o {F *
P(O)D2=mgfo dz¢(z)=mgNe. . (13 |1=JO ¢ dy+ L d(Yy—{p)dy= oclpt (N—Lp) o

The factorD? was introduced to effectively model the three =Ndoe. 17
dimensional system. By equatir®(0) to the critical pres- d ioulation i . he d .
sure P,, we again find the transition temperatufg, We need some manipulation in computing the denominator

_ ; e " I,. To this end, we again split, into two integrals: one for
s_urrr;gazgc/Z()l(fri)/'D%?E;ir::(:{zv]e;?iir;izislfi f/r(;tfil, g‘:ds ] tr21e solid regim_e, Wh?ch is peézsentially a r_egtang_le,_an(_j the
6=1/15=0.0667.After the first layer becomes crystallized other for the ﬂu[d regime, where tr)e density profile is given
at T, the density profile above the second layer is given b)})y Eq. (8) but with N replaced byN"=N—{¢. Hence,

Eq. (8) with Nreplaced byN—1 andi=1, ... N—1. Thisis

g o0
effectively equivalent to shifting the origin from the first to Izzf FyczscdyﬂLf yo(y—{p)dy
the second layer. The second layer, which has now become 0 &
the origin, becomes crystallized at the second critical tem- :¢C§§/2+ {rdo(N=Cp)+3, (18)

peratureT(?): ¢o(T))=1—- 5. The process continues, and
we can find a series of critical temperatufié8 at which the  where
ith layer in the original labeling becomes crystallized:

. N={p Ay| N-—{F
ng(N+l_|). (14) JEJ;) dy y¢(y): j§=:l yj(f)j(F)i:j: jgl ZJ/D'

Ko (19

So all the particles are crystallized @=T¢"=mgD/uo, g $N'; —p[N'2/2+ TN'/mgD] [Eq. (6)]. Hence, with
which is not the absolute zero, because 0. Note also that  \/ _ NJ—g —NT/T. we find

the crystallization of each layer proceeds with a discrete tem- F ¢
perature jumpAT=T{"Y—TO=mgD/ uy. Hence, the heat I=[N2TZ/2T2+ (N2T2/ ugT2) ] =N2A(T/T,)2,  (20)
release or the latent he@ resulting from the formation of

one solid layer iQ=AT=mgD/ u,. Bibenet al.[12] inves-  where A =[1/2+1/u¢]. Note that the increase in the center
tigated the density profile of a hard sphere suspension in af mass is quadratic iff, namely

gravitational field using Monte Carlo simulations, and re-

ported that foerng_/TsZ.S the system is a strongly

perturbed fluid, while at\~2.75 the first two layers form a with a=[2+ §(1— 6)]/[2(1— 6)?], which is a characteris-
crystal, and the formation of third and fourth layer crystalstic of Fermi systemg$10].
occurs in adiscontinuousmanner betweem =2.5 andA In passing, we make the following remarks. In R&f, an
=2.75. SettingngD/T,=2.5 andT,=mgDN u,, we find  attempt was made to derive the condensation point for the
wo=2.5N andé~1/(2.9N+1)~0.038 46, ifN is of order 10  lattice gas, which is again consistent with the form given by
[12]. Such findings do not seem to be inconsistent with theéEd. (1). While the lattice gas may capture some of the es-
results presented above. sence of hard sphere systems, it is important to recognize
We now examine the center of mass statistics below théhat the logarithmic singularity in the pressure of the lattice
condensation point,=T( . At a given temperaturg{ *) gas[7,13 is far different from the power law singularity of a
<T<T®M, what is the fraction of particles in a condensed'®@! hard sphere gafl4]. Finally, the relevance of the
regime? At this temperature, particles up to ttfelayer are ~ Present study to granular materiglS]: Granular materials
condensed. Then, the fraction of particles in the condense@e macroscopic particles, and the parametermgD/T
regime, Zg=i/N, which is termed the Fermi surfa¢&], is ~10" is an astronomical number, if one uses a usual tem-
given by a simple manipulation of identities: perature. Hence, the temperatureof the hard sphere gas
should be interpreted differently. One way to relate this tem-
perature to the vibrational strength of the granular bed is to
compare the kinetic expansion of the granular bed to the
thermal expansion of hard spheres, as was done in[ Reif.

where we usedT{ /T =[mgD(N—i)/uo)/mgDNuy  If we denote byh(I') the jump height of a single ball in a

TO=

(Az(T))=(z(T))—ND/2= aND(T/T,)? (21)

N

{e=iIN=1— —1-T/T,, (15)

=(N-i)/IN=T/T.. vibrating bed of vibrational strength=Aw?/g with A and
Now, the dimensionless center of mas§/(T)) the amplitude and frequency of the vibration, then we may
=(z(T))/D is given by set
o0 L — 2__
(y(T))= fo dy y¢><y>/ fo dyd(y)=l,/11, (16) (Az(T))=aND(T/To)"=h(I), 22

from which we can find the relation between the thermal
where the integral now splits into two due to the formation oftemperatureT of the hard spheres and the vibrational
a solid below{g. More precisely, strengthl’:
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_(1 5)\/DN2+5(1 5)’ @3

or, equivalently,
s | 2hDN
- 2+ 8(1-6)

T

ma (24

We point out that for granular materials excited by vibration

in a two dimensional containeh,=mgD/T, was determined
by fitting the density profile of Ref.9] by the Enskog pro-
file. The estimated value was~4.926(3], and the dimen-
sioness temperature of the vibrating bed W#3 .= 0.663.
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However, we point out that we have not taken into account
(a) the internal degrees of freeddh6] of the macroscopic
particles, such as rotation, arfd) the inelastic collisions,
which may lead to an interesting clustering instability’].
Hence, one has to be somewhat careful in extending the re-
sults of elastic hard spheres to granular materials.
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